A Guide to Sealing

OIL SEED PROCESSING PLANTS

- OIL SEED PRODUCT
- OIL SEED USAGE
- PRODUCTION PROCESS
- REFINING PROCESS
- MECHANICAL SEAL SELECTION
- CASE HISTORIES
AESSEAL® Disclaimer

EXCEPT AS EXPRESSLY PROVIDED HEREIN, AESSEAL plc SHALL NOT BE LIABLE FOR THE BREACH OF ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE, OR FOR ANY DAMAGES OR OTHER LIABILITY ARISING OUT OF OR IN CONJUNCTION WITH CUSTOMERS’ USE OF SUPPLIER PRODUCTS OR AESSEAL plc THE AUTHORISED DISTRIBUTOR DESIGNING, MANUFACTURING OR SELLING SUPPLIER PRODUCTS. IN NO EVENT SHALL AESSEAL plc BE LIABLE FOR DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOST SALES OR PROFIT, LOST PRODUCTION OR OUTPUT, INJURY TO PROPERTY OR REPUTATION, OR ANY OTHER DAMAGES WHETHER ARISING IN CONTRACT OR TORT OR OTHERWISE (WHETHER OR NOT ATTRIBUTABLE TO THE FAULT OR NEGLIGENCE OF AESSEAL plc). UNDER NO CIRCUMSTANCES SHALL ANY RECOVERY OF ANY KIND AGAINST AESSEAL plc BE GREATER IN AMOUNT THAN THE PRICE OF THE PRODUCT TO THE END USER.

This information corresponds to our current knowledge on the subject. It is offered solely to provide possible suggestions for your own experimentation. It is not intended, however, to substitute any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. This information may be subject to revision as new knowledge and experience becomes available. Since we cannot anticipate all variations in actual end-use conditions, AESSEAL plc makes no warranties and assumes no liability in connection with any use of this information. Nothing in this publication is to be considered as a licence to operate under or a recommendation to infringe any patent right.
Introduction

Oil Seed Processing has become a major industry throughout the World Economy as Food Producers continue to develop more uses for these Edible Oils. Oil can be derived from such seeds as Corn, Soybean, Cotton, Canola, Peanut, Sunflower.

There are approximately 272 Million MT (metric tons) of Oilseeds produced annually in the world and of this production over half the oilseeds grown are soybeans and 74 Million MT of Soybeans are produced per year in the United States. Within the last few years, the emphasis of the Oilseed Oil Producer has changed from stand-alone independent operations toward the integrated manufacturing facility, producing a more complete range of value-added products from the raw seed to the dinner table. End products such as Salad Oil, Shortening, Mayonnaise, and Margarine are commonly produced from these process plants.

Modern Oil Seed Processing consists of a series of unit processes that take the seed through the following steps:

1) Drying
2) Cleaning, Cracking, Dehulling
3) Conditioning and Flaking
4) Solvent Extraction and Solvent Removal
5) Degumming
6) Alkali-Refining
7) Bleaching
8) Hydrogenation
9) Deodorizing
10) Blending and Storage
Safety & Environmental Issues

Typical industry safety procedures are adhered to in most of these type plants. Care should be taken to wear safety glasses at all times and proper ear, head and foot protection is recommended.

In the Extraction area of the plant where Hexane is present, care should be taken to eliminate any items that may cause a spark, which can result in a flash fire due to the highly flammable nature of this solvent.

Other areas of these plants may have steam present for product heating. In the Refinery care should be taken when moving around the plant as some of the floors can be slippery due to product leakage and caustic cleaning procedures. While in the packaging areas where food grade material is present, hairnets may also be required.

A General Overview of the Process

Dry End

Seeds are harvested and brought to the plant via rail or truck and transferred to the storage silos via mechanical and/or air assisted elevators. The seeds are then moved to the cleaning process via mechanical augers and conveyors where any field trash is removed. The seeds are dried to the desired moisture content of 12% and then tempered which causes the husk to pull away from the meat and prepares the product for cracking and dehulling. The seeds are then weighed into the rotary cracking equipment. The objective of cracking is to break the seeds into suitable pieces for dehulling and flaking. The cracking is accomplished by passing the product through corrugated sawtooth opposing rolls running at varying speeds. The seeds now pass to either the vibratory screens, cyclone separators, or vacuum separator (Kice Separator) where they are subjected to up flows of dry air and the hull (husk) and meat (beans) of the seeds are separated. Cyclone Separators are utilized to remove the fine particles and trash from the hulls and collected in the bag house. The hulls are then sent to a secondary dehulling process, which separates the hulls into sizes for processing into meal and feed stock. Blowers and Vacuum units are used in this area to convey both materials to the next phase of the operation.

Conditioning

The beans or meat are then passed through a steam heating process. This is accomplished by either a vertical stack cooker or rotary horizontal cookers where the cracks are heated to approximately 72ºC (161ºF) and steam, or a water spray, is added to adjust moisture to approximately 11%, which makes the material plastic for flaking. On these types of cookers there are rotary steam joints (Johnson is typical) which require sealing.

Conditioning and Expanding

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL® Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Joints</td>
<td>Steam</td>
<td>177ºC (350ºF)</td>
<td>SW02** 316L CB/TC</td>
<td>Asisii</td>
<td>SW02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expander Extruder</td>
<td>Seed Flake</td>
<td>71ºC (160ºF)</td>
<td>CDSA** 316L TC/TC/TC/CB</td>
<td>Asisii</td>
<td>SW02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Water</td>
<td>Ambient</td>
<td>CURC** 316L CB/TC</td>
<td>Asisii</td>
<td>SW02</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Conditioning Processing Schematic.
Flaking
Flaking mills consist of a pair of smooth-surfaced rolls of approximately 20 to 32 inches (508mm to 812.8mm) in diameter which operate in opposing directions with minimum clearance and driven at different speeds. Pressure between the rolls is generated by mechanical or hydraulic systems and flake thickness is controlled by adjustments of this pressure. Flake thickness is generally in the range of 0.005 to 0.020 inches (0.13mm to 0.5mm).

Expanding (optional)
The dry flake is then transferred to the Expanders (extruders) where water and steam is introduced into the product and mixed in the chambers of the extruder. The wet cake is then extruded from the expander at approximately 104ºC (220ºF), sized and cut via a die head to provide the optimum material for the extraction phase of the process. These extruders require shaft sealing on the drive end where the shafts tend to operate at slow speeds but with high pressures and solids content in the extruder chamber. The expander process is used when increased bed drainage is desired in the Extraction Process, mainly in deep bed or Rotocel extraction.

Extraction
Solvent extraction of oilseeds is a diffusion operation in which the solvent (Hexane) selectively dissolves miscible components (oil) from other substances. The extractor unit provides the physical means of contact between the solvent and solids consisting of prepared oilseeds. Immersion and Percolation are the most common types of extraction though Perculation extraction is more common in modern process plants.
The Percolation method utilizes a bed composed of oilseed flakes and countercurrent flow of the flakes and miscella (the mixture of oil and Hexane). Three types of extractors are commonly found in the industry: 1) Rotary or Deep Bed, 2) Horizontal Belt, 3) Continuous Loop. A large percentage of the modern process plants utilize the Horizontal Continuous Loop though some of the older facilities still rely on the Rotary or Deep Bed technology.

![Schematic diagram of rotary extractor.](image)

The Horizontal Continuous Loop units utilize a conveyor system which moves the miscella through different stages of solvent introduction and screening, and finally a product dump cell. The Rotary Deep Bed units consist of a series of concentrically arranged cells, which are filled with oil-bearing material. Each cell is filled consecutively and brought in contact with decreasingly concentrated miscella. The freshly charged solids are brought into contact first with the most concentrated miscella and the fully extracted solids contact fresh solvent before discharging. Sealing of the rotating shaft on both top and bottom has historically been accomplished with mechanical packing, air energized boot or lip seals. Non metal contacting seals are preferred in this area due to the presence of Hexane in the process (which is extremely volatile in its common state) and the desire to minimize any sparking due to metal to metal contact or heat generation.

Solvent Removal and Recovery

The spent Hexane solvent must be recovered and recycled with a minimum of loss. Solvent leaves the extractor as full miscella and as solvent in the flakes, and is then transported to desolventizing. Solvent is removed from the Miscella by double-effect evaporation and steam stripping via a rising film evaporation process. In the first effect evaporator the mixture is 80% oil and the mixture is heated to approximately 38°C (100°F). In the second effect evaporator the mixture is heated with 182°C (360°F) steam to drive the Hexane out and leave a mixture of 98% oil at 110°C (230°F). The miscella is then contacted directly by steam in the primary stripping operation and the Hexane is again driven off leaving 99.5% oil. In the secondary stripping process, steam is again injected into the miscella and the final 99.9% pure oil product is produced. Producers strive for less than 100ppm of Hexane in their pure oil products.
Hexane recovery is essential and mandated by the EPA. The remaining Hexane present in the non-condensable gases is removed via a mineral oil stripping process. Purchased mineral oil is mixed with the Hexane latent gases in the absorption column where the Hexane is absorbed by the cold mineral oil. The cold mineral oil latent with Hexane is then heated and pumped to the top of the stripping column. Steam from the stripper passes to a condenser for recovery of the solvent. Solvent free gases from the absorber are vented to the atmosphere through a steam ejector or fan. The recovered Hexane is recycled by the facility and mixed with fresh Hexane to be re-used in the extractor process.

Solvent Extraction and Solvent Recovery

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction Condensate</td>
<td>Condensate</td>
<td>82ºC (180ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Water Stripper Feed</td>
<td>Water</td>
<td>Ambient</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>Hexane</td>
<td>Ambient</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Skim Pit</td>
<td>Water</td>
<td>Ambient</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Finished Oil</td>
<td>Raw Oil</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/CB</td>
<td>Aflas*</td>
<td>SW02 Water</td>
<td></td>
</tr>
<tr>
<td>Condensate Condenser</td>
<td>Glycol</td>
<td>Ambient</td>
<td>CURC™*</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1st to 2nd Stage Pump</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2nd Stage to Stripper</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Stripper Condenser</td>
<td>Hexane Vapour</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Vent Condenser</td>
<td>Hexane Vapour</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cold Mineral Oil</td>
<td>Mineral Oil</td>
<td>Ambient</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Hot Mineral Oil</td>
<td>Mineral Oil/Hexane</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>A Stage</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>B Stage</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C Stage</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Slurry Pump</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Full Miscella</td>
<td>Miscella</td>
<td>115ºC (240ºF)</td>
<td>CURC™**</td>
<td>316L</td>
<td>CB/TC</td>
<td>Viton*</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Degumming

Oils high in phosphorus, such as soybean, corn, and sunflower, may be degummed prior to refining. The degumming process is not a mandatory process due to the fact that the phosphatides (lecithin) can also be removed in the subsequent processes. The primary reason for degumming is to provide a crude-degummed oil suitable for storage or long transit or to produce lecithin to be sold as a by product for addition to livestock and poultry meal feed to increase the energy content.

Alkali-Refining

Alkali-Refining (also known as Caustic Refining) is the process designed to neutralize free fatty acids present in the oil. If degumming is not included in the facilities process, then caustic refining is the traditional first step for edible oil processing. This refining phase is important to remove the impurities in the oil, which have a tendency to turn dark when heated in the subsequent stages of the process. As the crude oil is delivered from the extraction plant, the oil is measured, cooled and injected with a measured amount of phosphoric or other acid. This acid has an affinity for the phosphatides (lecithin) and after bonding the acid and the phosphatides are removed from the process oil by a water wash. The oil and acid is brought in contact with the caustic wash in a high shear mixing application and passed through controlled heat exchangers and centrifuges where the Raw Oil and Soap Stock (Acid and Caustic) are separated. The Soap Stock is then sold as a by product or sent to waste water treatment. The oil is transferred to the next phase of the process.
Bleaching

Bleaching is the term given to describe the absorption cleansing process associated with edible oil refining. This process may include acid pretreatment, introduction of a retention aid and bleaching agent and the removal of the clay and absorbed materials. Other materials may also be introduced at this point, such as activated carbon for canola and other oils and filter-aids such as Diatomaceous earth, trisyl (small glass beads) and most recently rice hulls. The functions of the bleaching step is to remove or reduce the levels of pigments, oxidation products, phosphatides, soaps and trace metals in the oil. The bleaching process improves the color of the oil. These clays and bleaching agents may also be introduced via a slip stream line and inline style of mixer. Between the slurry tank and the bleaching vessel the oil is heated to prepare it for the bleaching process.

The oil is then agitated in the bleaching vessel for several minutes and then passed through the bleaching filter to remove any solid materials. These bleaching filters may be either plate and frame or leaf filters. As these filters become blinded, they are taken off line and cleaned manually or by vibratory action. The cake is collected and mixed with the meal at the dry end of the process. The oil is then passed on to the hydrogenation and deodorizing processes.

Degumming and Alkali-Refining

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoric Acid</td>
<td>Phosphoric Acid</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>SiC/6SiC/6SiC/6SiC</td>
<td>Viton®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Caustic Free Treat</td>
<td>Sodium Hydroxide</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Refining Feed</td>
<td>Raw Soybean Oil</td>
<td>(160°F)</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Dilute Caustic</td>
<td>Caustic+Water</td>
<td>Ambient</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>SW03</td>
<td>Water</td>
</tr>
</tbody>
</table>

Bleaching

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisyl Mixing (high shear)</td>
<td>Trisyl and Water</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Oil Refinery Dryer Discharge</td>
<td>Trisyl and Oil</td>
<td>71°C (160°F)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Trisyl Slurry Discharge</td>
<td>Trisyl and Oil</td>
<td>104°C (220°F)</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW03</td>
<td>Water</td>
</tr>
<tr>
<td>Clay Precoat</td>
<td>Diatomaceous Earth</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Clay Slurry Feed</td>
<td>Diatomaceous Earth</td>
<td>Ambient</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW02</td>
<td>Water</td>
</tr>
<tr>
<td>Bleach Vessel Feed</td>
<td>Oil Slurry</td>
<td>79°F (175°F)</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW03</td>
<td>Water</td>
</tr>
<tr>
<td>Bleach Filter Feed</td>
<td>Oil Slurry</td>
<td>79°F (175°F)</td>
<td>CDSA™</td>
<td>316L</td>
<td>TC/TC/TC/TC/TC/TC</td>
<td>Aflas®</td>
<td>SW03</td>
<td>Water</td>
</tr>
</tbody>
</table>
Hydrogenation

Hydrogenation is generally performed for one of two specific purposes. The first is to provide taste and smell stability and to enhance shelf life for unsaturated products. The second is to change the functional characteristics of the naturally occurring fats to those required for specific applications and functions. In the hydrogenation process the bleached oil is transferred to a reaction vessel where it is heated to 163°C (325°F) or higher to promote the reaction to commence. Water vapor is removed from the top of the vessel and catalyst (usually nickel) and hydrogen gas is added to the bleached oil and agitated per the individual processor recipe. When the processor has reached the desired results, the oil slurry is then passed through an oil-oil economizer to bring the hard oil to filtration temperature. Filter aids such as Diatomaceous earth are again added in this stage. The filter aid and hard oil slurry is then passed through the leaf press filter to remove the nickel catalyst and filter aid. The captured catalyst is recycled and the hard oil is sent through a finishing filter and on to storage or to the deodorization stage of the process.

Deodorization

Deodorization in the processing and refining of edible oil products is used to prepare the oil for use as an ingredient in margarine, shortening, salad oil, cooking oil, hard butters for the confectionery industry and many other products in the food industry. Deodorization is a steam stripping process wherein a good-quality steam, generated from deaerated and properly treated feedwater, is injected into the oil under low absolute pressure and sufficiently high temperature; 260°C (500°F), to vaporize the free fatty acid and odoriferous compounds and carry these volatiles away from the feed stock oil.

This process is carried out in either a Continuous Packed Column Deodorizer or a Votator Semi-Continuous Deodorizer and are the final phase of the process before the oil is transferred to either finished product holding tanks, packaging or the value added food stock area of some plants.

Deodorizing

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric Acid Addition</td>
<td>Citric Acid</td>
<td>Ambient</td>
<td>CURC™</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas®</td>
<td>SP02/SP04</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Stock Change</td>
<td>Seed Oil</td>
<td>79°C (175°F)</td>
<td>DMSF™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>SP02/SP04</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Distillate Recycle</td>
<td>Seed Oil</td>
<td>79°C (175°F)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>SP04</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Blend Feed</td>
<td>Seed Oil</td>
<td>79°C (175°F)</td>
<td>DMSF™</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas®</td>
<td>SP02/SP04</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Deodorizer Discharge</td>
<td>Seed Oil</td>
<td>135°C (275°F)</td>
<td>DMSF™</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas®</td>
<td>SP02/SP04</td>
<td>Mineral Oil</td>
</tr>
</tbody>
</table>
Raw Products, Blending and Storage

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Oil Transfer</td>
<td>Corn Oil</td>
<td>49ºC (120ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cotton Seed Transfer</td>
<td>Cotton Seed Oil</td>
<td>54ºC (130ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Base Stock to Blend Chest</td>
<td>Seed Oil</td>
<td>79ºC (175ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>RB Unloading</td>
<td>Seed Oil</td>
<td>82ºC (180ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Hard Oil Discharge</td>
<td>Seed Oil</td>
<td>104ºC (220ºF)</td>
<td>DMSF™</td>
<td>316L</td>
<td>CB/TC/TC/CB</td>
<td>Aflas®</td>
<td>5P02/5P04</td>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Tenox Conditioner</td>
<td>Vitamins & Water</td>
<td>Ambient</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Utilities

<table>
<thead>
<tr>
<th>Application</th>
<th>Fluid</th>
<th>Temperature</th>
<th>AESSEAL®</th>
<th>Metallurgy</th>
<th>Faces</th>
<th>Elastomer</th>
<th>API Plan</th>
<th>Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Feed Water</td>
<td>Water</td>
<td>177ºC (350ºF)</td>
<td>SM5523™</td>
<td>316L</td>
<td>CB/SIC</td>
<td>Aflas®</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Deodorizer Distillant Recycle Seed Oil</td>
<td>79ºC (175ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent Clay to Prep Soap</td>
<td>Soap</td>
<td>82ºC (180ºF)</td>
<td>DMSA™</td>
<td>316L</td>
<td>TC/TC/TC/CB</td>
<td>Aflas®</td>
<td>53 / 5W02</td>
<td>Water</td>
</tr>
<tr>
<td>Condensate Return</td>
<td>Condensate</td>
<td>77ºC (170ºF)</td>
<td>CURC™</td>
<td>316L</td>
<td>CB/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Pit and Skim Waste Water</td>
<td>Ambient</td>
<td></td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cooling Tower Water</td>
<td>Ambient</td>
<td></td>
<td>CURC™</td>
<td>316L</td>
<td>TC/TC</td>
<td>Aflas®</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Hot Oil</td>
<td>Theranol</td>
<td>260ºC (500ºF)</td>
<td>BQFD™</td>
<td>1.375"</td>
<td>SAC</td>
<td>ANT/CB/TC</td>
<td>Graphite</td>
<td>Steam Quench</td>
</tr>
</tbody>
</table>

Oilseed Processing Plant Equipment

Common Pumps:

<table>
<thead>
<tr>
<th>Model</th>
<th>Single Seal Selection</th>
<th>Double Seal Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goulds 3196 ST</td>
<td>1.375" CURC™</td>
<td>1.375" DMSA™ / AZA4549</td>
</tr>
<tr>
<td>Goulds 3196 MT</td>
<td>1.750" CURC™</td>
<td>1.750" DMSA™ / AZA7130</td>
</tr>
<tr>
<td>Dean Brothers R434</td>
<td>1.750" CURC™</td>
<td>1.750" DMSA™ / AZA7479 / DMSF™</td>
</tr>
<tr>
<td>Dean Brothers R454</td>
<td>2.250" CURC™</td>
<td>2.250" DMSF™</td>
</tr>
<tr>
<td>Durco Mark III Gr II</td>
<td>1.875" CURC™</td>
<td>1.875" DMSA™</td>
</tr>
<tr>
<td>Viking LS4225</td>
<td>1.625" CON II™</td>
<td>1.625" CON II™</td>
</tr>
<tr>
<td>Viking QS4124</td>
<td>2.437" CON II™</td>
<td>2.437" CON II™</td>
</tr>
<tr>
<td>Viking M125</td>
<td>2.437" CON II™</td>
<td>2.437" CON II™</td>
</tr>
<tr>
<td>Viking Q124</td>
<td>2.437" CON II™</td>
<td>2.437" CON II™</td>
</tr>
<tr>
<td>Viking LL4125</td>
<td>1.437" CON II™</td>
<td>1.437" CON II™</td>
</tr>
<tr>
<td>Viking AK4195</td>
<td>1.437" CON II™</td>
<td>1.437" CON II™</td>
</tr>
</tbody>
</table>

Common Agitators:

- Chemineer 3HTNS-5, 2HTNS-3, 2HSNS-15 | AZA7094 (for the 2HTNS-3)
- Lightnin 108 RSES, NSES, VSES | AZA7665
- Lightnin 208 VSES | AZA7682
AESSEAL® Cartridge Mechanical Seals Used in Oil Seed Plants

Convertor II™

Special NCM™

Stuffing Box Pressure Not to Exceed 15psi (1 bar)

Z Number Equipment
AZA7665 108 Lightnin Agitator
AZA7882 208 Lightnin Agitator

CURC™
Z Number	Equipment
AZA4549 | 3196ST Standard Box Goulds Pump
AZA7130 | 3196MT Standard Box Goulds Pump
AZA7479 | R434 Standard Box Dean Brothers Pump
AZA5419 | R454 Standard Box Dean Brothers Pump

Z Number	Equipment
AZA7234 | Goulds 3196ST (Pump stuffing box bore will need modifying to 2.125" / 54mm).
Barrier Systems for Double Seals

SSE10™ SYSTEM W2
STANDARD WATER MANAGEMENT VESSEL CODE VSE/SW02

SSE10™ SYSTEM W3
HOT WATER MANAGEMENT VESSEL CODE VSE/SW03

SSE10™ SYSTEM P2
BASIC PRESSURE SYSTEM CODE VSE/SP02

SSE10™ SYSTEM P4
HOT PRESSURE SYSTEM CODE VSE/SP04
API Plans Schematic Details

API PLAN NO.11
Product Recirculation from Pump Discharge to Seal through a Flow Control Orifice.

API PLAN NO.52
Unpressurized Buffer Reservoir, Circulation normally maintained by Pumping Ring. Also system normally continuously vented.

API PLAN NO.53
Pressurized Barrier Fluid Reservoir. Barrier pressure is greater than Product pressure. Circulation is maintained by a Pumping Ring.
Case Histories

CASE No. 742H

In an edible oil extraction plant a Durco GRP MKII pump was fitted with a CDSA™ C/TC/V/TC/C/V which was supported by a Pumppac MKII using Rapeseed oil at 60 psi (870 barg). Plant water was fed through the cooling coil. Commissioned March 1996.

CASE No. 1308J

In a soybean oil plant a Lightnin AGITATOR was fitted with an NCM™ (Mixer seal) TC vs. TC. Shaft speed 200 RPM. Product temperature running at 350°F. Aflas® was used as the Inboard Seal Elastomer. Commissioned September 2001. The seal replaced a competitor’s Canister seal which had failed within 6 months of being fitted.

CASE No. 1309J

In a Soybean Oil Refining Plant a CDSA™ TC/TC/A/TC/CB/V was used on a Horizontal Cent. Bleach filter pump API Plan No:53 AESSEAL® system used: SW03 with 3 Way Valve. Commissioned October 2000. The seal replaced a competitor’s seal which had failed within 3-4 weeks of being fitted.
NOTE:
Due to AESSEAL's policy of continuous improvement the following seal types have been upgraded:

<table>
<thead>
<tr>
<th>Old Seal</th>
<th>Upgraded to</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI</td>
<td>SCUSI</td>
</tr>
<tr>
<td>CSAI</td>
<td>CURC</td>
</tr>
<tr>
<td>CAPI</td>
<td>CURC</td>
</tr>
<tr>
<td>CAPO</td>
<td>CRCO</td>
</tr>
<tr>
<td>CMDU</td>
<td>CDSA & DMSF</td>
</tr>
</tbody>
</table>

The original products evolved into more modern seals which were designed to enhance application performance. The product model reference in the case study is for the most modern design, even though at the time of installation the actual installation was the predecessor model.

All information featured in these case histories has been obtained directly from Plant Engineers.

Although we have confidence in the accuracy of this information, it is not offered as a guarantee for seals manufactured by AESSEAL®

Any prospective user of our product should verify the information stated to their own satisfaction.

Further information is available on all the case histories contained in this booklet upon request.

Issue ‘A’ on a case history refers to information which was current on the 31st. January, 1989.

Issue ‘B’ refers to information which was current on 31st. January, 1990.

Issue ‘C’ refers to information which was current on 31st. January, 1991.

Issue ‘D’ refers to information which was current on 31st. January, 1992.

Issue ‘E’ refers to information which was current on 31st. January, 1993.

Issue ‘F’ refers to information which was current on 31st. January, 1995.

Issue ‘G’ refers to information which was current on 31st. January, 1998.

Issue ‘H’ refers to information which was current on 31st. October, 1999.

Issue ‘I’ refers to information which was current on 31st. March, 2000.

Issue ‘J’ refers to information which was current on 31st. November, 2000.

Where the statement ‘The seals are still working’ is made, this means that the customer is or was still using AESSEAL® mechanical seals at the time the case history was updated; as denoted by either:

For more detailed information, please contact our Applications Department.
USE DOUBLE MECHANICAL SEALS WITH HAZARDOUS PRODUCTS.
ALWAYS TAKE SAFETY PRECAUTIONS:
• GUARD YOUR EQUIPMENT
• WEAR PROTECTIVE CLOTHING

THIS DOCUMENT IS DESIGNED TO PROVIDE DIMENSIONAL INFORMATION AND AN INDICATION OF AVAILABILITY.
FOR FURTHER INFORMATION AND SAFE OPERATING LIMITS CONTACT OUR TECHNICAL SPECIALISTS AT THE LOCATIONS BELOW.

USA Sales & Technical advice:
AESSEAL Inc.
10231 Cogdill Road
Suite 105
Knoxville, TN 37932
USA
Telephone: 865 531 0192
Fax: 865 531 0571

Distributed by:

WINNER OF THE NATWEST SUNDAY TIMES COMPANY OF TOMORROW AWARD

© Copyright AESSEAL plc 2002 All Rights Reserved
AES / DOC / IN 4564 01/2002

The AESSEAL® Group of Companies

AESSEAL plc, Rotherham, U.K.
Telephone: +44 (0) 1709 369966

AESSEAL plc, Derby, U.K.
Telephone: +44 (0) 1332 366738

AESSEAL plc, Peterborough, U.K.
Telephone: +44 (0) 1733 230787

AESSEAL plc, Scotland, U.K.
Telephone: +44 (0) 1698 849808

AESSEAL plc, Middlesbrough, U.K.
Telephone: +44 (0) 1642 245744

AESSEAL plc, Essex, U.K.
Telephone: +44 (0) 1708 256600

AESSEAL plc, Pontypool, U.K.
Telephone: +44 (0) 1443 844330

AESSEAL (MCK) Ltd., Lisburn, U.K.
Telephone: +44 (0) 28 9266 9966

AESSEAL (MCK) Ltd., Co. Cork, Ireland.
Telephone: +353 (0) 21 633477

AESSEAL Inc., Knoxville, Tennessee, USA.
Telephone: +1 865 531 0192

AESSEAL Inc., Seneca Falls, New York, USA.
Telephone: +1 315 568 4706

AESSEAL Inc., Kingsport, Tennessee, USA.
Telephone: +1 423 224 7573

AESSEAL ESP LLC, Cedar Rapids, Iowa, USA.
Telephone: +1 319 393 4310

AESSEAL Deutschland AG.
Telephone: +49 (0) 60 74 881293

AESSEAL Italia SRL.
Telephone: +39 (0) 33 197 0556

AESSEAL Pty Ltd., Gauteng, South Africa.
Telephone: +27 (0) 11 466 6500

AESSEAL Pty Ltd., Conflund Branch, Amanzimtoti, South Africa.
Telephone: +27 (0) 31 903 5438

AESSEAL Malaysia SDN. BHD.
Telephone: +603 8062 1233

AESSEAL Nederland.
Telephone: +31 (0) 76 564 9292

AESSEAL Ibérica S.L.
Telephone: +34 977 55 43 30

AESSEAL Danmark, Greve, Denmark.
Telephone: +45 56 64 14 00

AESSEAL France S.A.R.L.
Telephone: +33 (0) 3 2017 2850

AESSEAL Türküye, İstanbul, Turkey.
Telephone: +90 (0) 212 237 40 47

AESSEAL Canada Inc.
Telephone: +1 807 624 2727

AESSEAL China Ltd.
Telephone: +86 574 8770 1888

AESSEAL plc, Mill Close
Templeborough
Rotherham
S60 1BZ
United Kingdom
Telephone:
Fax:
E-mail:
Internet:

+44 (0) 1709 369966
+44 (0) 1709 720788
seals@aesseal.com
http://www.aesseal.com