Mechanical Seal Piping Plans

- Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41
- Dual Seals plans 52, 53A, 53B, 53C, 54, 55
- Quench Seals plans 62, 65A, 65B, 66A, 66B
- Gas Seals plans 72, 74, 75, 76

Experience In Motion
Flowserve recognizes that one of the most effective ways to achieve long, uninterrupted mechanical seal life is to create a healthy environment around the seal faces. Piping plans help keep mechanical seals running cool and clean, promote safe handling of dangerous fluids, and extend the operational availability of rotating equipment. This reference book provides a concise summary of the most essential piping plans used successfully in today’s process plants.

Each plan shows all the standard and optional auxiliary components referenced in ISO 21049 / API Standard 682 and recommended by Flowserve. Consult your local Flowserve sales engineer to identify the right solution that satisfies your application requirements.
What
Pressurized barrier fluid circulation through reservoir. Fluid is circulated by a pumping ring in the dual seal assembly.

Why
Isolate process fluid. Zero process emissions.

Where

Preventive Maintenance
- Reference Appendix B
- Piping loop must self-vent to reservoir located at highest elevation.
- Pressurize reservoir at all times, maximum gas charge 150 - 200 psi (10 - 14 bar).
- Barrier fluid must be compatible with process.
- Reservoir level gage indicates both inboard and outboard seal leakage.

Preventative Maintenance
- Simplified centrifugal pump shown for all plans
- Shows typical seal arrangements
- Provides general tips to improve reliability and for troubleshooting
Plan 01

internal porting

seal end view
What
Internal seal chamber flush from pump discharge.
Operates similar to Plan 11.

Why
Seal chamber heat removal.
Seal chamber venting on horizontal pumps.
Reduce risk of freezing/polymerizing fluid in exposed Plan 11 piping.

Where
Custom seal chamber, most likely an ANSI/ASME pump.
Clean, moderate temperature fluids.
Used with single seals, rarely with dual seals.

Preventative Maintenance
Flush typically can not be directed over seal faces and seal heat removal is limited.
Calculate flush flow rate based on head loss through internal porting.
What
Dead-ended seal chamber with no flush.

Why
No fluid recirculation needed.

Where
Cooling jacket seal chambers in high temperature services.
Clean fluids.
Top-entry mixers/agitators with dry seals.
Heating jacket seal chambers in fluids that solidify at low temperatures.

Preventative Maintenance
Process must have adequate boiling point margin to avoid vaporization.
Cooling fluid in seal chamber jacket may be needed at all times in hot services.
Horizontal equipment must be self-venting.
Often used in combination with steam quench, Plan 62.
tapered bore seal chamber shown
What
Circulation created by the design of the seal chamber.

Why
No external fluid recirculation needed.
Solids removal from seal chamber.

Where
Large bore/open throat seal chambers.
Dirty or contaminated fluids.

Preventative Maintenance
Proper seal chamber design helps prevent solids from collecting at the seal faces.
What
Seal flush from pump discharge through orifice.
Default single seal flush plan.

Why
Seal chamber heat removal.
Seal chamber venting on horizontal pumps.
Increase seal chamber pressure and fluid vapor margin.

Where
General applications with clean fluids.
Clean, non-polymerizing fluids.

Preventative Maintenance
Use an orifice with a minimum 3 mm (1/8 inch) diameter.
Calculate flow rates to size orifice for adequate seal chamber flow.
Increase boiling point margin with proper orifice and throat bushing sizing.
Flush should be directed over seal faces with piping at 12 O’clock position.
Typical failure mode is a clogged orifice - check temperatures at pipe ends.
What
Recirculation from seal chamber to pump suction through orifice.
Standard flush plan on vertical pumps.

Why
Continuous seal chamber venting on vertical pumps.
Seal chamber heat removal.

Where
Vertical pumps.
Seal chamber pressure is greater than suction pressure.
Moderate temperature fluids with moderate solids.
Non-polymerizing fluids.

Preventative Maintenance
Vent piping loop prior to starting vertical pumps.
Use an orifice with a minimum 3 mm (1/8 inch) diameter.
Calculate flow rates to size orifice for adequate seal chamber flow.
Reduce seal chamber pressure with proper orifice and throat bushing sizing.
Typical failure mode is a clogged orifice - check temperatures at pipe ends.
What
Seal flush from pump discharge and recirculation to pump suction with orifices. Combination of Plan 11 and Plan 13.

Why
Continuous seal chamber venting on vertical pumps.
Seal chamber heat removal.
Increase seal chamber pressure and fluid vapor margin.

Where
Vertical pumps.
Clean, non-polymerizing fluids at moderate temperatures.

Preventative Maintenance
Use an orifice with a minimum 3 mm (1/8 inch) diameter.
Calculate flow rates to size orifice for adequate seal chamber flow.
Increase boiling point margin with proper orifice and throat bushing sizing.
Flush should be directed over seal faces.
Vent piping loop prior to starting vertical pumps.
Typical failure mode is a clogged orifice - check temperatures at pipe ends.
Plan 21

- seal
- end view
- drain, normally closed
- inlet
- vents, normally closed
- cooling out
- cooler
- cooling coils
- cooling in
- orifice
- temperature indicator
- drain, normally closed
What
Seal flush from pump discharge through orifice and cooler. Cooler added to Plan 11 flush increases heat removal.

Why
Seal cooling. Reduce fluid temperature to increase fluid vapor margin. Reduce coking.

Where
High temperature service, typically less than 177°C (350°F). Hot water over 80°C (180°F). Clean, non-polymerizing fluids.

Preventative Maintenance
Seal cooler and piping must have air vents at highest elevation - vent before starting. When using 682 Seal Cooler, pipe with series flow to maximize heat transfer. Use an orifice with a minimum 3 mm (1/8 inch) diameter. Calculate flow rates to size orifice for adequate seal chamber flow. Increase boiling point margin with proper orifice and throat bushing sizing. Regularly monitor cooler inlet and outlet temperatures for signs of clogging or fouling.
Plan 23

- Outlet
- Inlet
- Seal end view

- Vent, normally closed
- Cooling in
- Cooling out
- Cooler
- Cooling coils
- Temperature indicator
- Drain, normally closed
What
Seal flush from internal pumping device through cooler.
Standard flush plan in hot water services.

Why
Efficient seal cooling with low cooler duty.
Increase fluid vapor margin.
Improve water lubricity.

Where
High temperature service, hot hydrocarbons.
Boiler feed water and hot water over 80°C (180°F).
Clean, non-polymerizing fluids.

Preventative Maintenance - Reference Appendix A
Seal cooler and piping must have air vents at highest elevation - vent before starting.
When using 682 Seal Cooler, pipe with parallel flow to minimize head loss.
Seal chamber requires close clearance throat bushing to isolate process fluid.
Tangential seal gland taps should enter at bottom and exit at top.
Regularly monitor cooler inlet and outlet temperatures for signs of clogging or fouling.
Process fluids with iron should flow through magnetic separator before cooler.
What
Seal flush from pump discharge through cyclone separator. Centrifuged solids are returned to pump suction.

Why
Seal chamber heat removal. Solids removal from flush and seal chamber.

Where
Dirty or contaminated fluids, water with sand or pipe slag. Non-polymerizing fluids.

Preventative Maintenance
Cyclone separator works best on solids with a specific gravity twice the process fluid. Seal chamber pressure must be nearly equal to suction pressure for proper flows. Piping should not include an orifice and is not expected to vent the seal chamber. Typical failure mode is clogged separator or pipes - check temperatures at pipe ends.
Plan 32

Seal

End view

Inlet

Pressure indicator

Flow control valve

Flow indicator (optional)

Temperature indicator (optional)

Check valve

Strainer

From clean source, normally open
What
Seal flush from an external clean source.

Why
Seal chamber heat removal.
Process and solids removal from seal chamber.
Increase seal chamber pressure and fluid vapor margin.

Where
Dirty or contaminated fluids, paper pulp.
High temperature service.
Polymerizing and/or oxidizing fluids.

Preventative Maintenance
Use throat bushing sized to hold pressure or maintain flow velocity.
To restrict dirty process fluid, regulate injection flow rate.
To increase fluid vapor margin, regulate injection pressure.
Injection fluid must be compatible with process fluid.
Regularly monitor control system for closed valves or signs of plugging.
Plan 41

seal
end view

inlet

vents, normally closed

cooling out

cooling coils

cooler

cyclone separator

cooling in

drain, normally closed

temperature indicator
What
Seal flush from pump discharge through cyclone separator and cooler. Combination of Plan 21 and Plan 31.

Why
Seal cooling.
Solids removal from flush and seal chamber.

Where
High temperature service, typically less than 177°C (350°F).
Dirty or contaminated fluids, water with sand or pipe slag.
Non-polymerizing fluids.

Preventative Maintenance
Seal cooler and piping must have air vents at highest elevation - vent before starting.
When using 682 Seal Cooler, pipe with series flow to maximize heat transfer.
Cyclone separator works best on solids with a specific gravity twice the process fluid.
Seal chamber pressure must be nearly equal to suction pressure for proper flows.
Typical failure mode is clogged separator or pipes - check temperatures at pipe ends.
What
Unpressurized buffer fluid circulation through reservoir.
Fluid is circulated by a pumping ring in the dual seal assembly.

Why
Outboard seal acts as a safety backup to the primary seal.
Zero to very low process emissions.
No process contamination is allowed.

Where
Used with dual unpressurized seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Heat transfer fluids.

Preventative Maintenance - Reference Appendix B
Piping loop must self-vent to vapor recovery/flare system near atmospheric pressure.
Process vapor pressure is generally greater than reservoir pressure.
Buffer fluid must be compatible with process leakage.
Primary seal leakage is indicated by increased vent pressure.
Reservoir level indicator shows outboard seal leakage.
Plan 53A

- **Seal end view**
- **Outlet**
- **Inlet**
- **Pressure source, normally open**
- **Pressure indicator**
- **Pressure switch (low)**
- **Level switch (high)**
- **Level switch (low)**
- **Level indicator**
- **Cooling coils**
- **Cooling in**
- **Cooling out**
- **Reservoir**
- **Liquid fill, normally closed**
- **Drain, normally closed**
What
Pressurized barrier fluid circulation through reservoir. Fluid is circulated by a pumping ring in the dual seal assembly.

Why
Isolate process fluid.
Zero process emissions.

Where
Used with dual pressurized seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Heat transfer fluids.
Dirty/abrasive or polymerizing fluids.
Mixers/agitators and vacuum service.

Preventative Maintenance - Reference Appendix B
Piping loop must self-vent to reservoir located at highest elevation.
Pressurize reservoir at all times, maximum gas charge 10 - 14 bar (150 - 200 psi).
Barrier fluid must be compatible with process.
Reservoir level indicator shows both inboard and outboard seal leakage.
What
Pressurized barrier fluid circulation with bladder accumulator.
Fluid is circulated by a pumping ring in the dual seal assembly.

Why
Isolate process fluid.
Zero process emissions.
Higher pressure than Plan 53A.

Where
Used with dual pressurized seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Heat transfer fluids.
Dirty/abrasive or polymerizing fluids.

Preventative Maintenance - Reference Appendix B
Piping loop must be fully vented before starting.
Accumulator must be pressurized at all times, usually by gas charge.
Barrier fluid must be compatible with process.
Regularly monitor barrier pressure - manually add barrier fluid when pressure decays.
What
Pressurized barrier fluid circulation with piston accumulator. Fluid is circulated by a pumping ring in the dual seal assembly.

Why
Isolate process fluid.
Zero process emissions.
Higher pressure than Plan 53A.
Dynamic tracking of system pressure.

Where
Used with dual pressurized seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Heat transfer fluids.

**Preventative Maintenance** - Reference Appendix B
Piping loop must be fully vented before starting.
Reference line must tolerate process contamination without plugging.
Barrier fluid must be compatible with process.
Reservoir level indicator indicates both inboard and outboard seal leakage.
Plan 54

Flowserve

seal end view

outlet

inlet

from / to external pressurized barrier circulating system
What
Pressurized barrier fluid circulation by external system.

Why
Isolate process fluid.
Zero process emissions.
Seal cannot induce circulation.

Where
Used with pressurized dual seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Heat transfer fluids.
Dirty/abrasive or polymerizing fluids.
Mixers/agitators.

Preventative Maintenance
Piping loop must be fully vented before starting.
Circulating system must be pressurized and energized at all times.
Barrier fluid must be compatible with process.
Circulating system level indicator shows both inboard and outboard seal leakage.
Plan 55

seal
end view

outlet

inlet

from / to external unpressurized buffer circulating system
What
Unpressurized buffer fluid circulation by external system.

Why
Outboard seal acts as a safety backup to the primary seal.
Zero to very low process emissions.
No process contamination is allowed.
Additional heat removal from the inner seal.
Seal cannot induce circulation.

Where
Used with unpressurized dual seals.
Hazardous/toxic fluids.
Fluids that may solidify in contact with atmosphere.

Preventative Maintenance
Piping loop must be fully vented before starting.
Buffer fluid must be compatible with process leakage.
Accumulated process leakage should be routed to a recovery system.
Plan 62

- Inlet
- Seal (end view)
- Drain
- Pressure indicator (optional)
- Steam trap (steam quench)
- Quench, normally open
- Check valve
- Drain, normally open
What
External quench on atmospheric side of seal.
Quench fluids typically steam, nitrogen, or water.

Why
Prevent solids buildup on atmospheric side of seal.
Prevent icing.

Where
Used with single seals.
Oxidizing fluids or fluids that coke, hot hydrocarbons.
Crystallizing fluids or fluids that salt out.
Caustic.
Cold fluids less than 0°C (32°F).

Preventative Maintenance
Quench inlet should be on top of gland with outlet/drain on bottom.
Quench pressure should be limited to 0.2 bar (3 psi) or less.
Use throttle bushing on atmospheric side of seal to direct quench flow to seal drain.
Monitor regularly, checking for closed valves, blocked lines, and steam trap condition.
Drain - see end view for proper orientation.

- Seal end view
- Drain
- Block valve, normally open
- Level transmitter
- Overflow chamber
- Orifice bypass line
- Normally open drain

Plan 65A
What
External drain with leakage detection on atmospheric side of seal.

Why
Safety indicator for primary seal detects failure.

Where
May be used alone or with Plan 62 quench.
Used with close clearance throttle bushing.
Useful with single seals in remote locations and critical services.

Preventative Maintenance
Drain must be on bottom of gland with downward-sloped piping.
Continuously drain to liquid recovery system.
Orifice downstream of level switch transmitter 5 mm (1/4 inch) must be oriented vertically.
Bypass line from overflow chamber must re-enter below orifice.
Piping may require heat tracing when used with solidifying fluids.
Monitor regularly, checking for closed valves, blocked lines, and working level transmitter.
Plan 65B

Drain - see end view for proper orientation

- block valve, normally open
- level transmitter
- overflow chamber
- bypass line
- drain valve, normally closed
- drain
What
External drain with leakage detection on atmospheric side of seal.

Why
Leakage collection to detect for process leakage.
Safety indicator to detect seal failure.
Continuous monitoring of leakage rates to atmosphere.

Where
Use with close clearance throttle bushing.
Use with non-flashing, condensing fluids.
Useful with seals in remote locations and critical services.

Preventative Maintenance
Drain must be on bottom of gland with downward sloped piping.
Empty collection vessel when level transmitter indicates the vessel is full.
Bypass line from collection vessel must re-enter below drain valve.
Piping may require heat tracing when used with solidifying fluids.
Monitor regularly, checking for closed valves, blocked lines, and working level transmitter.
What
Leakage detection on atmospheric side of seal utilizing two throttle bushings in series.

Why
Safety indicator for primary seal to detect failure.
Minimize leakage from seal gland in case of seal failure.

Where
May be used alone or with Plan 65A or Plan 65B.
Used with flashing or non-flashing fluids.
Useful with single seals in remote locations and critical services.
Used with close clearance throttle bushings.

Preventative Maintenance
Drain must be on bottom of gland with downward sloped piping.
Continuously drain to a liquid recovery system.
Monitor for high pressure.
Plan 66B

- PIT
- seal
- end view
- drain
- pressure indicator transmitter (PIT)
- orifice plug
- drain
What
Leakage detection on atmospheric side of seal utilizing a throttle bushing and orifice plug.

Why
Safety indicator for primary seal detects failure.

Where
May be used alone or with Plan 65A or Plan 65B. Used with close clearance throttle bushing. Used with flashing or non-flashing fluids. Useful when adding atmospheric side leakage detection to an existing seal. Useful with single seals in remote locations and critical services.

Preventative Maintenance
Drain must be on bottom of gland with downward sloped piping. Continuously drain to a liquid recovery system. Monitor for high pressure. Check orifice regularly for build up and plugging.
1 - drain
2 - vent
3 - gas inlet, normally open
4 - filter drain, normally closed

A - coalescing filter
B - regulator
C - pressure indicator
D - pressure switch (low)
E - orifice
F - flow indicator
G - flow switch (high)
H - check valve
What
Unpressurized buffer gas control system.
Containment seal support typically with nitrogen buffer gas.

Why
Zero to very low process emissions.
Safety backup to primary seal.

Where
Used with dual unpressurized containment seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Clean, non-polymerizing, non-oxidizing fluids.
Used in combination with Plan 75 and/or Plan 76.

Preventative Maintenance
Clean, reliable, low pressure gas must be supplied to seal at all times.
Bottled gas supply is not recommended except as part of emergency backup system.
Primary seal leakage is indicated by pressure in the vent line.
Vent or drain are usually connected to low pressure vapor recovery/flare system.
Plan 74

1 - upset drain, normally closed
2 - gas inlet, normally open
3 - filter drain, normally closed

A - coalescing filter
B - regulator
C - flow indicator
D - flow switch (high)
E - pressure switch (low)
F - pressure indicator
G - check valve
What
Pressurized barrier gas control system.
Gas seal support typically with nitrogen barrier gas.

Why
Isolate process fluid.
Zero process emissions.

Where
Used with dual pressurized gas seals.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Services that do not tolerate liquid barrier seals.
Clean, non-polymerizing fluids.
Moderate temperature fluids.

Preventative Maintenance
Clean, reliable, pressurized gas must be supplied to seal at all times.
Barrier pressure is typically at least 1.75 bar (25 psig) above seal chamber pressure.
Flow indicator shows both inboard and outboard seal leakage.
Bottled gas supply is not recommended except as part of emergency backup system.
Drain - see end view for proper orientation

Seal end view

Pressure switch (high)

Pressure indicator

Vent, normally open

Orifice

Level switch (high)

Reservoir located below seal drain port

Isolation valve

Drain, normally closed

Level indicator

Drain
What
Drain from containment seal cavity to liquid collector and vapor recovery.

Why
Leakage collection for zero to very low process emissions.
Safety indicator for primary seal.

Where
May be used alone or with Plan 72 on containment seals.
Fluids that condense at ambient temperature.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Clean, non-polymerizing, non-oxidizing fluids.

Preventative Maintenance
Collection reservoir must be located below seal drain and downward-sloped piping.
Continuously vent collection reservoir to low pressure vapor recovery/flare system.
Drain collection reservoir to liquid recovery system as needed.
Primary seal leakage is indicated by increased vent pressure.
Monitor regularly for liquid level, valve settings, and low vent pressure.
Plan 76

- seal
- vent, normally open
- pressure indicator
- pressure switch (high)
- vent
- drain, normally closed
- orifice
- drain, normally closed
What
Vent from containment seal cavity to vapor recovery.

Why
Leakage collection for zero to very low process emissions.
Safety indicator for primary seal.

Where
May be used alone or with Plan 72 on containment seals.
Fluids that do not condense at ambient temperature.
High vapor pressure fluids, light hydrocarbons.
Hazardous/toxic fluids.
Clean, non-polymerizing, non-oxidizing fluids.

Preventative Maintenance
Continuously vent to low pressure vapor recovery/flare system.
Vent piping should include a condensate drain.
Primary seal leakage is indicated by increased vent pressure.
Monitor regularly for valve settings, blocked lines, and low vent pressure.
What
Minimize restrictions in piping systems

Why
Optimum flow rate for best piping plan performance

Where
Closed loop auxiliary systems with internal flow induction, good practice everywhere
Good Piping Practices

- Minimize line losses
- Use large diameter tubing
- Only upward sloping lines (slope shall be 40 mm/m [0.5 in/ft])
- Use long radius bends
- Minimize component losses
- Optimize for thermosyphon
- Check rotation direction
- Test for leaks

Dual Seals - Plan 53A shown

- Vertical Equipment
 - 0.91 m (3 ft.) normal liquid level
- Horizontal Equipment
 - 1.2 m (4 ft.) max
 - Low point drain

Appendix B
Airfin Cooler
Forced air or natural convection seal coolers

Seal Cooler
Compact design dual coil seal cooler

682 Seal Cooler
Seal cooler for complete API 682 specifications

Reservoirs
General duty and API 682 compliant reservoirs

Plans 21, 23 & 41

Plans 21, 23 & 41

Plans 21, 23 & 41

Plans 53, 53A & 53B
<table>
<thead>
<tr>
<th>Piston Accumulator</th>
<th>Circulator</th>
<th>Refill Cart</th>
<th>Gas Barrier Control Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulically charged reservoir for dual seals</td>
<td>Standalone dual seal support system</td>
<td>Mobile cart to manually fill liquid reservoirs</td>
<td>Complete control system for dual gas seals</td>
</tr>
</tbody>
</table>

![Diagram of Piston Accumulator](image1)
![Diagram of Circulator](image2)
![Diagram of Refill Cart](image3)
![Diagram of Gas Barrier Control Panel](image4)

- **Plan 53C**
- **Plan 54**
- **Plans 52 & 53**
- **Plans 72 & 74**
<table>
<thead>
<tr>
<th>Seal Gard I & II</th>
<th>Orifice</th>
<th>Magnetic Separator</th>
<th>Cyclone Separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination flush flow regulator and meter</td>
<td>Plug and plate style flush line orifices</td>
<td>Iron particle separator for seal flush</td>
<td>Solid particle separator used in dirty flush stream</td>
</tr>
</tbody>
</table>

Plan 32 | Plans 11, 13, 14, & 21 | Plan 23 | Plans 31 & 41
<table>
<thead>
<tr>
<th>Gestra® Steam Trap</th>
<th>SLD</th>
<th>DuraClear</th>
<th>Bearing Gard II & BGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family of reliable steam traps for quench flows</td>
<td>Quench lubrication device with synthetic grease</td>
<td>Synthetic lubricants from barrier fluid to bearing oil</td>
<td>Bearing frame protection devices</td>
</tr>
</tbody>
</table>

| Plan 62 | Plan 62 modified | Plans 52, 53 & 54 |
To find your local Flowserve representative
and find out more about Flowserve Corporation
visit www.flowserve.com

Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the Installation Instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

© 2013 Flowserve Corporation

USA and Canada
Kalamazoo, Michigan USA
Telephone: 1 269 381 2650
Telefax: 1 269 382 8726

Europe, Middle East, Africa
Roosendaal, The Netherlands
Telephone: 31 165 581400
Telefax: 31 165 554590

Asia Pacific
Singapore
Telephone: 65 6544 6800
Telefax: 65 6214 0541

Latin America
Mexico City
Telephone: 52 55 5567 7170
Telefax: 52 55 5567 4224